LIST OF PUBLICATIONS — MICHAEL FRENKLACH

 1.        “Effect of Salt Catalysts on the Rate of the Liquid-Phase Oxidation of n-Pentadecane,” M. N. Manakov, M. E. Frenklach, V. A. Kruchinin, Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol. 14(3), 423–426 (1971).

 2.        “Mechanism of the High Temperature Decomposition of Propane,” A. Lifshitz and M. Frenklach, J. Phys. Chem. 79, 686–692 (1975).

 3.        “The Structural Isomerization CH2=C=CH2 CH3–CºCH. Studies with a Single Pulse Shock Tube,” A. Lifshitz, M. Frenklach and A. Burcat, J. Phys. Chem. 79, 1148–1152 (1975).

 4.        “Shock Initiated Ignition of COS–O2–Ar Mixtures,” A. Lifshitz, M. Frenklach, P. Schechner, and H. F. Carroll, Int. J. Chem. Kinet. 7, 753–773 (1975).

 5.        “Pyrolysis of Allene and Propyne Behind Reflected Shocks,” A. Lifshitz, M. Frenklach and A. Burcat, J. Phys. Chem. 80, 2437–2443 (1976).

 6.        “The Reaction Between H2 and D2 in a Shock Tube: Study of the Atomic vs. Molecular Mechanism by Atomic Resonance Absorption Spectrometry,” A. Lifshitz and M. Frenklach, J. Chem. Phys. 67, 2803–2810 (1977).

 7.        “Oxidation of Cyanogen. II. The Mechanism of the Oxidation,” A. Lifshitz and M. Frenklach, Int. J. Chem. Kinet. 12, 159–168 (1980).

 8.        “Oxidation of Hydrogen Sulfide,” M. Frenklach, J. H. Lee, J. N. White and W. C. Gardiner, Jr., Combust. Flame 41, 1–16 (1981).

 9.        “LDV Measurement of Soot Particle Size,” M. Frenklach, S. Taki, C. K. Li Kwok Cheong and R. A. Matula, Chemical and Physical Processes in Combustion, Fifteenth Fall Technical Meeting of the Eastern Section of the Combustion Institute, 1982, Paper 16, 4 pp.

10.       “Soot Formation from Polycyclic Aromatics,” M. Frenklach, Report No. DOE/PC/30247–T4, December 1982, 28 pp.

11.       “Soot Formation in Shock-Tube Oxidation of Acetylene and Toluene,” M. Frenklach, M. K. Ramachandra and R. A. Matula, Sixteenth Fall Technical Meeting of the Eastern Section of the Combustion Institute, 1983, Paper 2, 4 pp.

12.       “Empirical Modeling of Soot Formation in Pyrolysis of Aromatic Hydrocarbons,” M. Frenklach, D. Clary and R. A. Matula, Sixteenth Fall Technical Meeting of the Eastern Section of the Combustion Institute, 1983, Paper 6, 4 pp.

13.       “Shock Initiated Ignition in Methane-Propane Mixtures,” M. Frenklach and D. Bornside, Sixteenth Fall Technical Meeting of the Eastern Section of the Combustion Institute, 1983, Paper 40, 4 pp.

14.       “A Conceptual Model for Soot Formation in Pyrolysis of Aromatic Hydrocarbons,” M. Frenklach, S. Taki and R. A. Matula, Combust. Flame 49, 275–282 (1983).

15.       “Soot Particle Size and Soot Yield in Shock Tube Studies,” M. Frenklach, S. Taki, C. K. Li Kwok Cheong and R. A. Matula, Combust. Flame 51, 37–43 (1983).

16.       “Sensitivity Analysis and Parameter Estimation in Dynamic Modeling of Chemical Kinetics,” D. Miller and M. Frenklach, Int. J. Chem. Kinet. 15, 677–696 (1983).

17.       “Aspects of Autocatalytic Reaction Kinetics,” M. Frenklach and D. Clary, Ind. Eng. Chem. Fundam. 22, 433–436 (1983).

18.       “Soot Formation in Shock Tube Pyrolysis of Acetylene, Allene and 1,3-Butadiene,” M. Frenklach, S. Taki, M. B. Durgaprasad and R. A. Matula, Combust. Flame 54, 81–101 (1983).

19.       “Shock Tube Study of the Fuel Structure Effects on the Chemical Kinetic Mechanisms Responsible for Soot Formation,” M. Frenklach, Report No. NASA CR–147661, November 1983, 96 pp.

20.       “Shock-Initiated Ignition in Methane-Propane Mixtures,” M. Frenklach and D. E. Bornside, Combust. Flame 56, 1–27 (1984).

21.       “Systematic Optimization of a Detailed Kinetic Model Using a Methane Ignition Example,” M. Frenklach, Combust. Flame 58, 69–72 (1984).

22.       “Representation of Homogeneous Polymerization in Detailed Computer Modeling of Chemical Kinetics,” M. Frenklach and W. C. Gardiner, Jr., J. Phys. Chem. 88, 6263–6266 (1984).

23.       “LDV Measurement of Gas Flow behind Reflected Shocks,” M. Frenklach, C. K. Li Kwok Cheong and E. S. Oran, Progress in Astronautics and Aeronautics 95, 722–735 (1984).

24.       “Soot Formation in Shock-Tube Pyrolysis Chlorinated Methanes and Ethenes,” M. Frenklach, J-P. Hsu and R. A. Matula, Seventeenth Fall Technical Meeting of the Eastern Section of the Combustion Institute, Clearwater Beach, Florida, December 3–5, 1984, Paper 103, 4 pp.

25.       “Modeling,” M. Frenklach, in Combustion Chemistry (W. C. Gardiner, Jr., Ed.), Springer-Verlag, New York, 1984, Chap. 7, pp. 423–453.

            “Modelirovanie Kineticheskikh Protzesov,” M. Frenklach, in Khimya Goreniya (W. C. Gardiner, Jr., Ed.), Mir, Moscow, 1988, Chap. 7, pp. 374–403 (translation to Russian of the above).

26.       “Transferring Data from a Nicolet Digital Oscilloscope to an IBM Mainframe Computer Using an APPLE II+ Microcomputer. Part I,” D. L. Miller, M. Y. Frenklach, P. J. Laughlin and D. W. Clary, Computer Applications in the Laboratory 3, 184–189 (1984).

            “Der APPLE II+ als Hilfsmittel bei der Datenubertragung von einem Digital-Speicheroszilloskop auf einen IBM-Mainframe-Rechner. Teil I,” Computer-Anwendung im Labor 2, 98–104 (1985) [translation into German of the above].

27.       “Transferring Data from a Nicolet Digital Oscilloscope to an IBM Mainframe Computer Using an APPLE II+ Microcomputer. Part II,” D. L. Miller, M. Y. Frenklach, P. J. Laughlin and D. W. Clary, Computer Applications in the Laboratory 4, 260–269 (1984).

            “Der APPLE II+ als Hilfsmittel bei der Datenubertragung von einem Digital-Speicheroszilloskop auf einen IBM-Mainframe-Rechner. Teil II," Computer-Anwendung im Labor 3–4, 146–154 (1985) [translation into German of the above].

28.       “Discussion of the Bates-Watts paper, Multiresponse Estimation With Special Applications to First Order Kinetics,” M. Frenklach, J. Research NBS 90(6), 438–439 (1985).

29.       “Discussion of the Box-Meyer paper, Some New Ideas in the Analysis of Screening Designs,” V. Nair and M. Frenklach, J. Research NBS 90(6), 501–502 (1985).

30.       “Statistically Rigorous Parameter Estimation in Dynamic Modeling Using Approximate Empirical Models,” M. Frenklach and D. Miller, AIChE Journal 31, 498–500 (1985).

31.       “Soot Formation in Shock-Tube Oxidation of Hydrocarbons,” M. Frenklach, M. K. Ramachandra and R. A. Matula, Proc. Combust. Inst. 20, 871–878 (1985).

32.       “Detailed Kinetic Modeling of Soot Formation in Shock-Tube Pyrolysis of Acetylene,” M. Frenklach, D. W. Clary, W. C. Gardiner, Jr. and S. E. Stein, Proc. Combust. Inst. 20, 887–901 (1985).

33.       “Philosophy of Laboratory Automation,” D. W. Clary, M. Frenklach and D. L. Miller, American Laboratory 17(9), 60–64 (1985).

34.       “Computer Modeling of Infinite Reactions Sequences: A Chemical Lumping,” M. Frenklach, Chem. Eng. Sci. 40, 1843–1849 (1985).

35.       “Linear Recurrence Relations with Binomial Coefficients,” M. Frenklach, The Fibonacci Quarterly 23(4), 359–363 (1985).

36.       “Dynamics of Discrete Distribution for Smoluchowski Coagulation Model,” M. Frenklach, J. Colloid Interface Sci. 108, 237–242 (1985).

37.       “Shock Tube Study of the Fuel Structure Effects on the Chemical Kinetic Mechanisms Responsible for Soot Formation. Part II,” M. Frenklach, D. W. Clary and M. K. Ramachandra, Report No. NASA CR–174880, March 1985, 168 pp.

38.       “Shock-Tube Pyrolysis of Chlorinated Hydrocarbons: Formation of Soot,” M. Frenklach, J. P. Hsu, D. L. Miller and R. A. Matula, Combust. Flame 64,141–155 (1986).

39.       “Empirical Modeling of Soot Formation in Shock-Tube Pyrolysis of Aromatic Hydrocarbons,” M. Frenklach, D. W. Clary and R. A. Matula, Proc. 15th International Symposium on Shock Waves and Shock Tubes, Stanford University, pp. 303–309 (1986).

40.       “Shock-Tube Pyrolysis of Acetylene: Sensitivity Analysis of the Reaction Mechanism for Soot Formation,” M. Frenklach, D. W. Clary, W. C. Gardiner, Jr. and S. E. Stein, Proc. 15th International Symposium on Shock Waves and Shock Tubes, Stanford University, pp. 295–301 (1986).

41.       “Mechanism of Soot Formation in Acetylene-Oxygen Mixtures,” M. Frenklach, D. W. Clary, T. Yuan, W. C. Gardiner, Jr. and S. E. Stein, Combust. Sci. Technol. 50, 79–115 (1986).

42.       “Systematic Development of Reduced Reaction Mechanisms for Dynamic Modeling,” M. Frenklach, K. Kailasanath and E. S. Oran, Progress in Astronautics and Aeronautics 105(2), 365–376 (1986).

43.       “Detailed Modeling of PAH Profiles in a Sooting Low-Pressure Acetylene Flame,” M. Frenklach and J. Warnatz, Combust. Sci. Technol. 51, 265–283 (1987).

44.       “Induction Zone Exothermicity of Acetylene Ignition,” S. M. Hwang, W. C. Gardiner, Jr., M. Frenklach and Y. Hidaka, Combust. Flame 67, 65–75 (1987).

45.       “Increasing the Computational Feasibility of Urban Air Quality Models that Employ Complex Chemical Mechanisms,” A. R. Marsden, Jr., M. Frenklach and D. D. Reible, J. Air Pollution Control Association 37, 370–376 (1987).

46.       “Aerosol Dynamics Modeling Using the Method of Moments,” M. Frenklach and S. J. Harris, J. Colloid Interface Sci. 118, 252–261 (1987).

47.       “Rate Constant for Cyclization/Decyclization of Phenyl Radical,” M. J. S. Dewar, W. C. Gardiner, Jr., M. Frenklach and I. Oref, J. Am. Chem. Soc. 109, 4456–4457 (1987).

48.       “Chemistry of Soot Nucleation,” M. Frenklach, Proceedings of the XVIIIth Biennial Conference on Carbon, Worcester Polytechnic Institute, pp. 143–144 (1987).

49.       “Shock-Tube and Modeling Study of Soot Formation in Mixtures of Hydrocarbons,” M. Frenklach, T. Yuan and M. K. Ramachandra, Preprints of the 194th ACS National Meeting 32(3), 467–473 (1987).

50.       “Modeling of Large Reaction Systems,” M. Frenklach in Complex Chemical Reaction Systems, Mathematical Modelling and Simulation (J. Warnatz and W. Jäger, Eds.), Springer Series in Chemical Physics, Vol. 47, Springer-Verlag, Berlin, 1987, pp. 2–16.

51.       “Optimization of Large Reaction Systems,” M. Frenklach and M. J. Rabinowitz, Proceedings of 12th IMACS World Congress on Scientific Computation (R. Vichnevetsky, P. Borne and J. Vignes, Eds.), Gerfidn, Cedex, France, Vol. 3, 1988, pp. 602–604.

52.       “Comment on the Proposed Role of Spheroidal Carbon Clusters in Soot Formation,” M. Frenklach and L. B. Ebert, J. Phys. Chem. 92(2), 561–563 (1988).

53.       “Growth Mechanism of Vapor-Deposited Diamond,” M. Frenklach and K. E. Spear, J. Mater. Res. 3(1), 133–140 (1988).

54.       “Effect of Fuel Structure on Pathways to Soot,” M. Frenklach, D. W. Clary, W. C. Gardiner, Jr. and S. E. Stein, Proc. Combust. Inst. 21, 1067–1076 (1988).

55.       “Effect of Alcohol Addition on Shock-Initiated Formation of Soot from Benzene,” M. Frenklach and T. Yuan, Proceedings of the 16th International Symposium on Shock Tubes and Waves, VCH, Weinheim, pp. 487–493 (1988).

56.       “Soot Formation in Binary Hydrocarbon Mixtures,” M. Frenklach, T. Yuan and M. K. Ramachandra, Energy & Fuels 2, 462–480 (1988).

57.       “The Catalytic Etching of Platinum Foils and Thin Films During Hydrogen Oxidation,” V. W. Dean, M. Frenklach and J. Phillips, J. Phys. Chem. 92, 5731–5738 (1988).

58.       “Energetics of Acetylene-Addition Mechanism of Diamond Growth,” D. Huang, M. Frenklach and M. Maroncelli, J. Phys. Chem. 92, 6379–6381 (1988).

59.       “Vapor Deposition of Crystalline Diamond,” K. E. Spear, M. Frenklach, A. Badzian, T. Badzian and R. Messier, Ceram. Eng. Sci. Proc. 9, 1095–1102 (1988).

60.       “Relationship Between Ignition Delay and Reaction Zone Energy Release,” M. J. Rabinowitz and M. Y. Frenklach, Progress in Astronautics and Aeronautics 113, Part I, 19–27 (1988).

61.       “Formation of Silicon Carbide Particles Behind Shock Waves,” C. S. Carmer and M. Frenklach, Appl. Phys. Lett. 54, 1430–1432 (1989).

62.       “Silicon Carbide and the Origin of Interstellar Grains,” M. Frenklach, C. S. Carmer and E. D. Feigelson, Nature 339, 196–198 (1989).

63.       “Formation of Polycyclic Aromatic Hydrocarbons in Circumstellar Envelopes,” M. Frenklach and E. D. Feigelson, Astrophys. J. 341, 372–384 (1989).

64.       “The Role of Hydrogen in Vapor Deposition of Diamond,” M. Frenklach, J. Appl. Phys. 65, 5142–5149 (1989).

65.       “On the Driving Force of PAH Production,” M. Frenklach, Proc. Combust. Inst. 22, 1075–1082 (1989).

66.       “Homogeneous Nucleation of Diamond Powder in the Gas Phase,” M. Frenklach, R. Kematick, D. Huang, K. E. Spear, A. W. Phelps and R. Koba, J. Appl. Phys. 66, 395–399 (1989).

67.       “Mechanisms of Nucleation and Growth of CVD Diamond,” K. E. Spear and M. Frenklach, Proceedings of the First International Symposium on Diamond and Diamond-Like Films (J. P. Dismukes, A. J. Purdes, K. E. Spear, B. S. Meyerson, K. V. Ravi, T. D. Moustakas, and M. Yoder, Eds.), The Electrochemical Society, Pennington, N.J., 1989, pp. 122–138.

68.       “Kinetics of Methane Pyrolysis in Hot-Filament Reactor: Effect of Hydrogen,” M. Frenklach, Preprints of Papers Presented at the 197th ACS National Meeting, ACS, Division of Fuel Chemistry, Vol. 34, No. 2, 1989, pp. 451–456.

69.       “Mechanisms for CVD of Crystalline Diamond,” K. E. Spear and M. Frenklach, Nineteenth Biennial Conference on Carbon, The Pennsylvania State University, 1989, pp. 380–381.

70.       “Homogeneous Nucleation of Diamond,” D. Huang, M. Frenklach, W. Howard, R. Kematick, K. Spear, and R. Koba, Nineteenth Biennial Conference on Carbon, The Pennsylvania State University, 1989, pp. 384–385.

71.       “Soot in Flames and Interstellar Dust,” M. Frenklach and E. D. Feigelson, Earth and Mineral Sciences 58(2), 25–30 (1989).

72.       “Combustion Science—A Guide to High Temperature Materials Processing,” M. Frenklach, “Chemical and Physical Processes in Combustion,” Twenty-Second Fall Technical Meeting of the Eastern Section of the Combustion Institute, 1989, Invited Paper C, 4 pp.

73.       “Measurement of the Rate Coefficient of Reaction H + O2 ® OH + O,” T. Yuan, C. Wang, M. J. Rabinowitz, and M. Frenklach, “Chemical and Physical Processes in Combustion,” Twenty-Second Fall Technical Meeting of the Eastern Section of the Combustion Institute, 1989, Paper 7, 4 pp.

74.       “Modeling of PAH Profiles in Premixed Flames,” H. Wang and M. Frenklach, “Chemical and Physical Processes in Combustion,” Twenty-Second Fall Technical Meeting of the Eastern Section of the Combustion Institute, 1989, Paper 12, 4 pp.

75.       “A Unifying Picture of Gas Phase Formation and Growth of PAH, Soot, Diamond and Graphite,” M. Frenklach, in Carbon in the Galaxy: Studies From Earth and Space (J. C. Tarter, S. Chang and D. J. DeFrees, Eds.), NASA Conference Publication 3061, 1990, pp. 259–273.

76.       “Molecular Processes During Vapor Phase Deposition of Diamond,” M. Frenklach, Carbon 28(6), 759–760 (1990).

77.       “Detailed Mechanism and Modeling of Soot Formation,” M. Frenklach, in Extended Abstracts of the Conference on Mechanism of Non-Uniform Combustion, Tokyo Institute of Technology, Japan, 1990, pp. 115–124.

78.       “Measurement of the Rate Coefficient of Reaction CO + OH ® CO2 + H,” C.-L. Yu, C. Wang and M. Frenklach, Twenty-Third Fall Technical Meeting of the Eastern Section of the Combustion Institute, 1990, Paper 20, 4 pp.

79.       “Detailed Mechanism Reduction for Flame Modeling,” H. Wang and M. Frenklach, “Chemical and Physical Processes in Combustion,” Twenty-Third Fall Technical Meeting of the Eastern Section of the Combustion Institute, 1990, Paper 39, 4 pp.

80.       “Synthesis of Diamond Powder in Acetylene-Oxygen Plasma,” W. Howard, D. Huang, J. Yuan, M. Frenklach, K. E. Spear, A. W. Phelps and R. Koba, J. Appl. Phys. 68, 1247–1251 (1990).

81.       “Kinetics of Titanium(IV) Chloride Oxidation,” S. E. Pratsinis, H. Bai, P. Biswas, M. Frenklach, and S. V. R. Mastrangelo, J. Am. Ceramic Soc. 73, 2158–2162 (1990).

82.       “Kinetics of Powder Nucleation,” M. Frenklach, in Ceramic Powder Science III (G. L. Messing, S.-I. Hirano and H. Hausner, Eds.), American Ceramic Society, Westerville, Ohio, 1990, pp. 239–250.

83.       “Production of Polycyclic Aromatic Hydrocarbons in Chlorine-Containing Environments,” M. Frenklach, Combust. Sci. Technol. 74, 283–296 (1990).

84.       “Soot Formation in Shock-Tube Pyrolysis and Oxidation of Vinylacetylene,” M. Frenklach, T. Yuan and M. K. Ramachandra, In Current Topics in Shock Waves, 17th International Symposium on Shock Waves and Shock Tubes, Y. W. Kim, Ed., American Institute of Physics, New York, 1990, pp. 475–480.

85.       “Detailed Surface and Gas-Phase Chemical Kinetics of Diamond Deposition,” M. Frenklach and H. Wang, Phys. Rev. B 43, 1520–1545 (1991).

86.       “Acetylene Reaction with the Si(111) Surface: A Semi-Empirical Quantum Chemical Study,” B. Weiner, C. S. Carmer and M. Frenklach, Phys. Rev. B 43, 1678–1684 (1991).

87.       “Determination of the Rate Coefficient for Reaction H + O2 ® OH + O by Shock-Tube/Laser-Absorption/Detailed-Modeling Study,” T. Yuan, C. Wang, C.-L. Yu, M. Frenklach and M. J. Rabinowitz, J. Phys. Chem. 95, 1258–1265 (1991).

88.       “A New Mechanism for the Formation of Meteoritic Kerogen-Like Material,” W. A. Morgan, E. D. Feigelson, H. Wang, and M. Frenklach, Science 252, 109–112 (1991).

89.       “Potential Energy Calculations of Diamond Growth by Methyl Radicals,” D. Huang and M. Frenklach, J. Phys. Chem. 95, 3692–3695 (1991).

90.       “Detailed Modeling of Soot Particle Nucleation and Growth,” M. Frenklach and H. Wang, Proc. Combust. Inst. 23, 1559–1566 (1991).

91.       “Induced Nucleation of Diamond Powder,” M. Frenklach, W. Howard, D. Huang, J. Yuan, K. E. Spear and R. Koba, Appl. Phys. Lett. 59, 546–548 (1991).

92.       “Molecular Processes in Diamond Formation,” M. Frenklach, in Proceedings of the Second International Symposium on Diamond Materials, edited by A. J. Purdes, J. C. Angus, R. F. Davis, B. M. Meyerson, K. E. Spear, and M. Yoder, The Electrochemical Society, Pennington, N.J., 1991, pp. 142–153.

93.       “Diamond Powder Formation From the Gas Phase,” W. Howard, M. Frenklach, K. E. Spear, D. Huang, J. Yuan, R. Kematick, R. Koba and A. W. Phelps, Proceedings of the Second International Conference on New Diamond Science and Technology, edited by R. Messier, J. T. Glass, J. E. Butler and R. Roy (Materials Research Society, Pittsburgh, PA, 1991), pp. 313–319.

94.       “Analysis of Cyclic Deposition of Diamond,” H. Wang and M. Frenklach, J. Appl. Phys. 70, 7132–7136 (1991).

95.       “Detailed Reduction of Reaction Mechanisms for Flame Modeling,” H. Wang and M. Frenklach, Combust. Flame 87, 365–370 (1991).

96.       “Aromatics Growth beyond the First Ring and the Nucleation of Soot Particles,” M. Frenklach and H. Wang, Preprints of the 202nd ACS National Meeting, Vol. 36, No. 4, 1991, pp. 1509–1516.

97.       “A Computational Study of Sooting Limits in Laminar Premixed Ethane/Oxygen/Nitrogen Flames,” P. Markatou, H. Wang and M. Frenklach, Twenty-Fourth Fall Technical Meeting of the Eastern Section of the Combustion Institute, 1991, Paper 10, 4 pp.

98.       “Temperature and Pressure Dependence of Reaction CO + OH: Application of Unimolecular Theory with Solution Mapping Method,” C.-L. Yu, C. Wang and M. Frenklach, Twenty-Fourth Fall Technical Meeting of the Eastern Section of the Combustion Institute, 1991, Paper 61, 4 pp.

99.       “The Oxidation of Methane at Elevated Pressures: Preliminary Experiments and Modeling,” T. B. Hunter, T. A. Litzinger, H. Wang and M. Frenklach, Twenty-Fourth Fall Technical Meeting of the Eastern Section of the Combustion Institute, 1991, Paper 73, 4 pp.

100.     “Reduction of Chemical Reaction Models,” M. Frenklach, in Numerical Approaches to Combustion Modeling (E. S. Oran and J. P. Boris, Eds.), Progress in Astronautics and Aeronautics, Vol. 135, American Institute of Aeronautics and Astronautics, Washington, D.C., 1991, pp. 129–154.

101.     “Development of Chemical Reaction Models,” M. Frenklach, in Chemical Reactions in Complex Systems (A. V. Sapre and F. J. Krambeck, Eds.), Van Nostrand Reinhold, 1991, pp. 197–221.

102.     “Theory and Models for Nucleation and Growth of Diamond Films,” M. Frenklach, in Diamond and Diamond-Like Films and Coatings, R. E. Clausing, L. L. Horton, J. C. Angus and P. Koidl, Eds., NATO-ASI Series B: Physics, Vol. 266, Plenum, New York, 1991, pp. 499–523.

103.     “Optimization and Analysis of Large Chemical Kinetic Mechanisms Using the Solution Mapping Method — Combustion of Methane,” M. Frenklach, H. Wang and M. J. Rabinowitz, Prog. Energy Combust. Sci. 18, 47–73 (1992).

104.     “Energetics of Surface Reactions on (100) Diamond Plane,” D. Huang and M. Frenklach, J. Phys. Chem. 26, 1868–1875 (1992).

105.     “Monte Carlo Simulation of Hydrogen Reactions with the Diamond Surface,” M. Frenklach, Phys. Rev. B 45, 9455–9458 (1992).

106.     “Atomic Hydrogen Adsorption on the Reconstructed Diamond (100)-(2´1) Surface,” R. E. Thomas, R. A. Rudder, R. J. Markunas, D. Huang and M. Frenklach, J. Chem. Vapor Deposition 1, 6–19 (1992).

107.     “Monte Carlo Simulation of Diamond Growth by Methyl and Acetylene Reactions,” M. Frenklach, J. Chem. Phys. 97, 5794–5802 (1992).

108.     “Cyclic Deposition of Diamond: Experimental Testing of Model Predictions,” B. Cline, W. Howard, H. Wang, K. E. Spear, and M. Frenklach, J. Appl. Phys. 72, 5926–5940 (1992).

109.     “Molecular Dynamics with AM1 Potential: Reactions on Diamond Surface,” X. G. Zhao, C. S. Carmer, B. Weiner and M. Frenklach, J. Phys. Chem. 97, 1639–1648 (1993).

110.     “Modification of Troe’s Falloff Broadening,” H. Wang and M. Frenklach, Chem. Phys. Lett. 205, 271–276 (1993).

111.     “Enthalpies of Formation of Benzenoid Aromatic Molecules and Radicals,” H. Wang and M. Frenklach, J. Phys. Chem. 97, 3867–3874 (1993).

112.     “A Computational Study of Sooting Limits in Laminar Premixed Flames of Ethane, Ethylene and Acetylene,” P. Markatou, H. Wang and M. Frenklach, Combust. Flame 93, 467–482 (1993).

113.     “Molecular Dynamics with Combined Quantum and Empirical Potentials: C2H2 Adsorption on Si(100),” C. S. Carmer, B. Weiner and M. Frenklach, J. Chem. Phys. 99, 1356–1372 (1993).

114.     “A Theoretical Study of Reaction between Phenylvinyleum Ion and Acetylene,” H. Wang, B. Weiner and M. Frenklach, J. Phys. Chem. 97, 10364–10371 (1993).

115.     “Diamond Surface Studies of Growth Mechanisms from Water-Alcohol Deposition Chemistries,” R. E. Thomas, J. B. Posthill, R. A. Rudder, R. J. Markunas, and M. Frenklach, Proceedings of the Third International Symposium on Diamond Materials, edited by J. P. Dismukes and K. V. Ravi, The Electrochemical Society, Pennington, N.J., 1993, pp. 71–77.

116.     “Oxygen Poisoning of Diamond Film Growth,” by W. N. Howard, K. E. Spear and M. Frenklach, Appl. Phys. Lett. 63, 2641–2643 (1993).

117.     “Activation Energy and Mechanism of CO Desorption from (100) Diamond Surface,” M. Frenklach, D. Huang, R. E. Thomas, R. A. Rudder and R. J. Markunas, Appl. Phys. Lett. 63, 3090–3092 (1993).

118.     “Determination of the Rate Coefficient for Reaction of CH3 with O2,” C.-L. Yu, C. Wang and M. Frenklach, Combustion Fundamentals and Applications, Joint Technical Meeting of the Central and Eastern States Sections of the Combustion Institute, 1993, pp. 307–311.

119.     “On the Troe Formula for Unimolecular Reaction Rate Coefficients,” H. Wang and M. Frenklach, Combustion Fundamentals and Applications, Joint Technical Meeting of the Central and Eastern States Sections of the Combustion Institute, 1993, pp. 337–341.

120.     “The Oxidation of Methane at Elevated Pressures: Preliminary Experiments and Modeling,” T. B. Hunter, T. A. Litzinger, H. Wang and M. Frenklach, Combustion Fundamentals and Applications, Joint Technical Meeting of the Central and Eastern States Sections of the Combustion Institute, 1993, pp. 453–457.

121.     “Enthalpies of Formation of PAH Molecules and Radicals,” H. Wang and M. Frenklach, Combustion Fundamentals and Applications, Joint Technical Meeting of the Central and Eastern States Sections of the Combustion Institute, 1993, pp. 655–659.

122.     “Detailed Modeling of Soot Formation in High-Pressure Laminar Premixed Flames,” A. Kazakov, H. Wang and M. Frenklach, Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Princeton, NJ, 1993, pp. 295–298.

123.     “Detailed Kinetic Modeling of Aromatics Formation, Growth and Oxidation in Laminar Premixed Flames,” H. Wang and M. Frenklach, Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Princeton, NJ, 1993, pp. 299–302.

124.     “RRKM Analysis of Aromatic Radical Reactions with Acetylene,” H. Wang and M. Frenklach, Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Princeton, NJ, 1993, pp. 455–458.

125.     “Basic Research on Natural Gas Combustion,” M. Frenklach and W. C. Gardiner, Jr., Gas Research Institute, January 15, 1993, 75 pp.

126.     “Detailed Mechanism and Modeling of Soot Formation,” M. Frenklach and H. Wang, in Advanced Combustion Science (T. Someya, Ed.), Springer-Verlag, Tokyo, 1993, pp. 168–175.

127.     “Mechanisms for CVD Diamond Growth,” K. E. Spear and M. Frenklach, in Synthetic Diamond: Emerging CVD Science and Technology (K. E. Spear and J. P. Dismukes, Eds.), Wiley, New York, 1994, pp. 243–304.

128.     “Detailed Mechanism and Modeling of Soot Particle Formation,” M. Frenklach and H. Wang, in Soot Formation in Combustion: Mechanisms and Models (H. Bockhorn, Ed.), Springer Series in Chemical Physics, Vol. 59, Springer-Verlag, Berlin, 1994, pp. 162–190.

129.     “Transport Properties of Polycyclic Aromatic Hydrocarbons for Flame Modeling,” H. Wang and M. Frenklach, Combust. Flame 96, 163–170 (1994).

130.     “Elementary Reaction Mechanism of Diamond Growth from Acetylene,” S. Skokov, B. Weiner, and M. Frenklach, J. Phys. Chem. 98, 8–11 (1994).

131.     “Reconstruction of (100) diamond surfaces using molecular dynamics with combined quantum and empirical forces,” S. Skokov, C. S. Carmer, B. Weiner and M. Frenklach, Phys. Rev. B 49, 5662–5671 (1994).

132.     “Molecular Dynamics Study of Oxygenated (100) Diamond Surfaces,” S. Skokov, B. Weiner and M. Frenklach, Phys. Rev. B 49, 11374–11382 (1994).

133.     “The Oxidation of Methane at Elevated Pressures: Experiments and Modeling,” T. B. Hunter, H. Wang, T. A. Litzinger and M. Frenklach, Combust. Flame 97, 201–224 (1994).

134.     “Reexamination of Shock-Tube Measurements of the Rate Coefficient of H + O2 ® OH + O,” C.-L. Yu, M. Frenklach, D. A. Masten, R. K. Hanson, and C. T. Bowman, J. Phys. Chem. 98, 4770–4771 (1994).

135.     “Induced Nucleation of Carbon Dust in Red Giant Stars,” B. J. Cadwell, H. Wang, E. D. Feigelson, and M. Frenklach, Astrophys. J. 429, 285–299 (1994).

136.     “Elementary Reaction Mechanism for Growth of Diamond (100) Surfaces from Methyl Radicals,” S. Skokov, B. Weiner and M. Frenklach, J. Phys. Chem. 98, 7073–7082 (1994).

137.     “Modeling of NOx Formation in Natural Gas Fueled Diesel Combustion,” Y. Yoshihara, H. Wang, and M. Frenklach, Proceedings of the Third International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA), The Japanese Society of Mechanical Engineers (JSME), Yokohama, Japan, 1994, pp. 577–582.

138.     “High Temperature Chemistry of CVD Diamond Growth,” K. E. Spear and M. Frenklach, Pure & Appl. Chem. 66, 1773–1782 (1994).

139.     “Parametrization of Chemically-Activated Reactions Involving Isomerization,” A. Kazakov, H. Wang and M Frenklach, J. Phys. Chem. 98, 10598–10605 (1994).

140.     “Chemical Reaction Mechanisms of Diamond Growth,” M. Frenklach, in Diamond, SiC and Nitride Wide Bandgap Semiconductors, edited by C. H. Carter, Jr., G. Gildenblat, S. Nakamura, and R. J. Nemanich, Materials Research Society, Pittsburgh, 1994, pp. 255–266.

141.     “Calculations of Rate Coefficients for the Chemically Activated Reactions with Vinylic and Aromatic Radicals,” H. Wang and M. Frenklach, J. Phys. Chem. 98, 11465–11489 (1994).

142.     “An Atomistic Model for Stepped Diamond Growth,” M. Frenklach, S. Skokov and B. Weiner, Nature 372, 535–537 (1994).

143.     “Reduced Mechanism of Soot Formation—Application to Natural Gas-Fueled Diesel Combustion,” Y. Yoshihara, A. Kazakov, H. Wang, and M. Frenklach, Proc. Combust. Inst. 25, 941–948 (1994).

144.     “Detailed Modeling of Soot Formation in Laminar Premixed Ethylene Flames at a Pressure of 10 Bar,” A. Kazakov, H. Wang, and M. Frenklach, Combust. Flame 100, 111–120 (1995).

145.     “A Theoretical Analysis of a Diamond (100)-(2´1) Dimer Bond,” B. Weiner, S. Skokov, and M. Frenklach, J. Chem. Phys. 102, 5486–5491 (1995).

146.     “Chemistry of Acetylene on Diamond (100) Surfaces,” S. Skokov, B. Weiner, and M. Frenklach, J. Phys. Chem. 99, 5616–5625 (1995).

147.     “Dimer-Row Pattern Formation in Diamond (100) Growth,” S. Skokov, B. Weiner, M. Frenklach, Th. Frauenheim, and M. Sternberg, Physical Review B 52, 5426–5432 (1995).

148.     “On the Role of Surface Diffusion in Diamond Growth,” M. Frenklach, S. Skokov, and B. Weiner, Proceedings of the Fourth International Symposium on Diamond Materials, edited by K. V. Ravi and J. P. Dismukes, Electrochemical Society, Pennigton, N.J., 1995, pp. 1–12.

149.     “Transformation of Monoatomic Steps on (100) Diamond Surfaces,” S. Skokov, B. Weiner, and M. Frenklach, Proceedings of the Fourth International Symposium on Diamond Materials, edited by K. V. Ravi and J. P. Dismukes, Electrochemical Society, Pennigton, N.J., 1995, pp. 546–551.

150.     “Impurity Effects in the Cyclic Deposition of Diamond Films,” W. Howard, K. Spear, and M. Frenklach, Proceedings of the Fourth International Symposium on Diamond Materials, edited by K. V. Ravi and J. P. Dismukes, Electrochemical Society, Pennigton, N.J., 1995, pp. 656–660.

151.     “Chemical Kinetics of Methyl Oxidation by Molecular Oxygen,” C.-L. Yu, C. Wang, and M. Frenklach, J. Phys. Chem. 99, 14377–14387 (1995).

152.     “Modeling of Soot Coagulation and Aggregation at High-Pressure Conditions,” A. Kazakov and M. Frenklach, Fall Technical Meeting of the Eastern States Section of the Combustion Institute, Worcester, MA, 1995, pp. 415–418.

153.     “A Post-Processing Method for Feature Sensitivity Coefficients,” M. Goldenberg and M. Frenklach, Int. J. Chem. Kinet. 27, 1135–1142 (1995).

154.     “Ethane Oxidation at Elevated Pressures in the Intermediate Temperature Regime: Experiments and Modeling,” T. B. Hunter, H. Wang, T. A. Litzinger, and M. Frenklach, Combust. Flame 104, 505–523 (1996).

155.     “A Theoretical Study of the Energetics and Vibrational Spectra of Oxygenated (100) Diamond Surfaces,” S. Skokov, B. Weiner, and M. Frenklach, in Diamond for Electronic Applications, edited by D. Dreifus, A. Collins, C. Beetz, T. Humphreys, K. Das, and P. Pehrsson (Materials Research Society, Pittsburgh, 1996) pp. 281–286.

156.     “A One-Dimensional Stochastic Model of Diamond Growth,” M. Frenklach, in Evolution of Epitaxial Structure and Morphology, edited by A. Zangwell, D. Jesson, D. Chambliss, and R. Clarke (Materials Research Society, Pittsburgh, 1996) pp. 83–88.

157.     “Silicon Particle Formation in Pyrolysis of Silane and Disilane,” M. Frenklach, L. Ting, H. Wang, and M. J. Rabinowitz, Israel Journal of Chemistry 36, 293–303 (1996) (an invited article for a special issue on “Chemical Reactions in Shock Waves”).

158.     “On Surface Growth Mechanism of Soot Particles,” M. Frenklach, Proc. Combust. Inst. 26, 2285–2293 (1996).

159.     “Theoretical Study of Oxygenated (100) Diamond Surfaces in the Presence of Hydrogen,” S. Skokov, B. Weiner, and M. Frenklach, Phys. Rev. B 55, 1895-1902 (1997).

160.     “Surface Migration in Diamond Growth,” M. Frenklach and S. Skokov, J. Phys. Chem. B 101, 3025–3036 (1997) (Invited Feature Article).

161.     “A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames,” H. Wang and M. Frenklach, Combust. Flame 110, 173–221 (1997).

162.     “On the Relative Contribution of Acetylene and Aromatics to Soot Particle Surface Growth,” A. Kazakov and M. Frenklach, Combust. Flame 112, 270–274 (1997).

163.          “Formation of Carbon Particles in Cosmic Environments,” M. Frenklach and E. Feigelson, in From Stardust to Planetesimals (Y. J. Pendleton and A. G. G. M. Tielens, Eds.), Astronomical Society of the Pacific Conference Series, Vol. 122, San Francisco, CA, 1997, pp. 107–116.

164.          “Dynamic Modeling of Soot Particle Coagulation and Aggregation: Implementation with the Method of Moments and Application to High-Pressure Laminar Premixed Flames,” A. Kazakov and M. Frenklach, Combust. Flame 114, 484–510 (1998).

165.          “Simulation of Surface Reactions,” M. Frenklach, Pure Appl. Chem. 70, 477–484 (1998) (Invited).

166.          “Determination of Rate Coefficients for Reactions of Formaldehyde Pyrolysis and Oxidation in the Gas Phase,” B. Eiteneer, C.-L. Yu, M. Goldenberg, and M. Frenklach, J. Phys. Chem. A 102, 5196–5205 (1998).

167.          “OH(OD)+CO: Measurements and an Optimized RRKM Fit,” D. M. Golden, G. P. Smith, A. B. McEwen, C.-L. Yu, B. Eiteneer, M. Frenklach, G. L. Vaghjiani, A. R. Ravishankara, and F. P. Tully, J. Phys. Chem. 102, 8598–8606 (1998).

168.          “Monte Carlo Simulation of Soot Particle Aggregation with Simultaneous Surface Growth—Why Primary Particles Appear Spherical,” P. Mitchell and M. Frenklach, Proc. Combust. Inst. 27, 1507–1514 (1998).

169.          “Hydrogen Migration in Polyaromatic Growth,” M. Frenklach, N. W. Moriarty, and N. J. Brown, Proc. Combust. Inst. 27, 1655–1661 (1998).

170.          “Detailed Kinetic Modeling of Soot Formation in Ethylene/Air Mixtures Reacting in a Perfectly Stirred Reactor,” N. J. Brown, K. L. Revzan, and M. Frenklach, Proc. Combust. Inst. 27, 1573–1580 (1998).

171.          “PRISM: Piecewise Reusable Implementation of Solution Mapping. An Economical Strategy for Chemical Kinetics,” S. R. Tonse, N. W. Moriarty, N. J. Brown and M. Frenklach, Israel Journal of Chemistry 39, 97–106 (1999).

172.          “Numerical Modeling of Surface Reactions,” M. Frenklach, in Materials Science of Carbide, Nitrides and Borides (Y. G. Gogotsi and R. A. Andrievski, Eds.), Kluwer, Dordrecht, Netherlands, 1999, pp. 119–132.

173.          “Molecular Dynamics using Combined Quantum and Empirical Forces: Application to Surface Reactions,” M. Frenklach and Craig S. Carmer, in Molecular Dynamics of Clusters, Surfaces, Liquids, and Interfaces (W. L. Hase, Ed.), Advances in Classical Trajectory Methods, Vol. IV, JAI Press, Stamford, CT, 1999, pp. 27–63.

174.          “Hydrogen Migration in the Phenylethen-2-yl Radical,” N. W. Moriarty, N. J. Brown, and M. Frenklach, J. Phys. Chem. A 103, 7127–7135 (1999).

175.          “Propargyl Radical: An Electron Localization Function Study,” X. Krokidis, N. W. Moriarty, W. A. Lester, Jr., and M. Frenklach, Chem. Phys. Lett. 314, 534–542 (1999).

176.          “Kinetic Modeling of Soot Formation with Detailed Chemistry and Physics: Laminar Premixed Flames of C2 Hydrocarbons,” J. Appel, H. Bockhorn, and M. Frenklach, Combust. Flame 121, 122–136 (2000).

177.          “Comment on ‘Rate Constants for CH3 + O2 ® CH3O + O at High Temperature and Evidence for H2CO + O2 ® HCO + HO2’ and ‘Rate Coefficient Measurements of the Reaction CH3 + O2 ® CH3O + O’”, J. Phys. Chem. A 104, 9797–9799 (2000).

178.          “Scaling and Efficiency of PRISM in Adaptive Simulations of Turbulent Premixed Flames,” J. B. Bell, N. J. Brown, M. S. Day, M. Frenklach, J. F. Grcar, R. M. Propp, and S. R. Tonse, Proc. Combust. Inst. 28, 107–113 (2000).

179.          “On Unimolecular Decomposition of Phenyl Radical,” H. Wang, A. Laskin, N. W. Moriarty, and M. Frenklach, Proc. Combust. Inst. 28, 1545–1555 (2000).

180.          “The Dependence of Chemistry on the Fuel Inlet Equivalence Ratio in Vortex-Flame Interactions,” J. B. Bell, N. J. Brown, M. S. Day, M. Frenklach, J. F. Grcar, and S. R. Tonse, Proc. Combust. Inst. 28, 1933–1939 (2000).

181.          “Ab Initio Study Of Naphthalene Formation By Addition Of Vinylacetylene to Phenyl,” N. W. Moriarty and M. Frenklach, Proc. Combust. Inst. 28, 2563–2568 (2000).

182.          “Solution Mapping Approach to Modeling Combustion,” M. Frenklach, in Computational Fluid and Solid Mechanics, K. J. Bathe, Ed., Elsevier, New York, 2001, pp. 1177–1179.

183.          “A Quantum Monte Carlo Study of Energy Differences in C4H3 and C4H5 Isomers,” X. Krokidis, N. W. Moriarty, W. A. Lester, Jr., and M. Frenklach, Int. J. Chem. Kinet. 33, 808–820 (2001).

184.          “The Addition Reaction of Propargyl and Acetylene: Pathways to Cyclic Hydrocarbons,” N. W. Moriarty, X. Krokidis, W. A. Lester Jr., and M. Frenklach, Proceedings of the 2nd Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, CA, March 25–28, 2001, paper 102.

185.          “Analysis of Surface Kinetics in Time-Dependent Monte Carlo Simulations of Diamond Growth,” A. Netto and M. Frenklach, in Diamond Science and Technology (V. Stefan and A. M. Prokhorov, Eds.), Stefan University Press Series on Frontiers in Science and Technology, La Jolla, CA, 2001, Vol. 1, pp. 197–210 (invited).

186.          “Reaction Mechanism of Soot Formation in Flames,” Phys. Chem. Chem. Phys. 4, 2028–2037(2002).

187.          “Prediction Uncertainty from Models and Data,” M. Frenklach, A. Packard, and P. Seiler, in Proceedings of the American Control Conference, Anchorage, Alaska, May 8-10, 2002, pp. 4135–4140.

188.          “Method of Moments with Interpolative Closure,” Chem. Eng. Sci. 57, 2229–2239 (2002).

189.          “Nucleation of Soot: Molecular Dynamics Simulations of Pyrene Dimerization,” C. A. Schuetz and M. Frenklach, Proc. Combust. Inst. 29, 2307–2314 (2002).

190.          “Experimental and Modeling Study of Shock-Tube Oxidation of Acetylene,” B. Eiteneer and M. Frenklach, Int. J. Chem. Kinet. 35, 391–414 (2003).

191.          “Computational Economy Improvements in PRISM,” S. R. Tonse, N. W. Moriarty, M. Frenklach, and N. J. Brown, Int. J. Chem. Kinet. 35, 438–452 (2003).

192.          “Particle Aggregation with Simultaneous Surface Growth,” P. Mitchell and M. Frenklach, Phys. Rev. E 67, 061407 (2003).

193.          “Geometry Optimization in Quantum Monte Carlo with Solution Mapping: Application to Formaldehyde,” C. A. Schuetz, M. Frenklach, A. C. Kollias, and W. A. Lester, Jr., J. Chem. Phys. 119, 9386–9392 (2003).

194.          “Collaborative Data Processing in Developing Predictive Models of Complex Reaction Systems,” M. Frenklach, A. Packard, P. Seiler, and R. Feeley, Int. J. Chem. Kinet. 36, 57–66 (2004).

195.          “On the Role of Surface Migration in the Growth and Structure of Graphene Layers,” M. Frenklach and J. Ping, Carbon 42, 1209–1211 (2004).

196.          “An Allosteric Model for Transmembrane Signaling in Bacterial Chemotaxis,” C. V. Rao, M. Frenklach, and A. P. Arkin, J. Mol. Biol. 343, 291–303 (2004).

197.          “Consistency of a Reaction Dataset,” R. Feeley, P. Seiler, A. Packard, and M. Frenklach, J. Phys. Chem. A 108, 9573–9583 (2004).

198.          “Detailed Kinetic Modeling of Soot Aggregate Formation in Laminar Premixed Flames,” M. Balthasar and M. Frenklach, Combust. Flame 140, 130–145 (2005).

199.          “Migration Mechanism of Aromatic-edge Growth,” M. Frenklach, C. A. Schuetz, and J. Ping, Proc. Combust. Inst. 30, 1389–1396 (2005).

200.          “Monte-Carlo Simulation of Soot Particle Coagulation and Aggregation: The Effect of a Realistic Size Distribution,” M. Balthasar and M. Frenklach, Proc. Combust. Inst. 30, 1467–1475 (2005).

201.          “On Chain Branching and Its Role in Homogeneous Ignition and Premixed Flame Propagation,” J. C. Lee, H. N. Najm, S. Lefantzi, J. Ray, M. Frenklach, M. Valorani, and D. Goussis, in Computational Fluid and Solid Mechanics 2005, K. J. Bathe, Ed., Elsevier, New York, 2005, pp. 717–720.

202.          “Kinetic Monte Carlo Simulations of CVD Diamond Growth—Interplay Among Growth, Etching, and Migration,” A. Netto and M. Frenklach, Diamond Relat. Mater. 14, 1630–1646 (2005).

203.          “Quantum Monte Carlo Study of Heats of Formation and Bond Dissociation Energies of Small Hydrocarbons,” A. C. Kollias, D. Domin, G. Hill, M. Frenklach, D. M. Golden, and W. A. Lester, Jr., Int. J. Chem. Kinet. 37, 583–592 (2005).

204.          “A Collaborative Informatics Infrastructure for Multi-scale Science,” J. D. Myers, T. C. Allison, S. Bittner, B. Didier, M. Frenklach, W. H. Green, Y.-L. Ho, J. Hewson, W. Koegler, C. Lansing, D. Leahy, M. Lee, R. McCoy, M. Minkoff, S. Nijsure, G. von Laszewski, D. Montoya, L. Oluwole, C. Pancerella, R. Pinzon, W. Pitz, L. A. Rahn, B. Ruscic, K. Schuchardt, E. Stephan, A. Wagner, T. Windus, C. Yang, Cluster Comput. 8, 243-253 (2005).

205.          “Quantum Monte Carlo Study of Small Hydrocarbon Atomization Energies,” A. C. Kollias, D. Domin, G. Hill, M. Frenklach, W. A. Lester, Jr., Mol. Phys. 104, 467–475 (2006).

206.          “Model Discrimination using Data Collaboration,” R. Feeley, M. Frenklach, M. Onsum, T. Russi, A. Arkin, and A. Packard, J. Phys. Chem. A 110, 6803-6813 (2006).

207.          “Numerical Approaches for Collaborative Data Processing,” P. Seiler, M. Frenklach, A. Packard, and R. Feeley,” Optim. Eng. 7, 459–478 (2006).

208.          “A System Analysis Approach for Atmospheric Observations and Models: the Mesospheric HOx Dilemma,” G. P. Smith, M. Frenklach, R. Feeley, A. Packard, and P. Seiler, J. Geophys. Res. (Atmospheres) 111, D23301 (2006).

209.          “A CSP and Tabulation-Based Adaptive Chemistry Model,” J. C. Lee, H. N. Najm, S. Lefantzi, J. Ray, M. Frenklach, M. Valorani, and D. A. Goussis, Combust. Theory Model. 11, 73–102 (2007).

210.          “Transforming Data into Knowledge—Process Informatics for Combustion Chemistry,” M. Frenklach, Invited Topical Review, Proc. Combust. Inst. 31, 125–140 (2007).

211.          “Graphene layer growth: Collision of migrating five-member rings,” R. Whitesides, A. C. Kollias, D. Domin, W. A. Lester, Jr., and M. Frenklach, Proc. Combust. Inst. 31, 539–546 (2007).

212.          “Numerical Simulations of Soot Aggregation in Premixed Laminar Flames,” N. Morgan, M. Kraft, D. Wong, M. Frenklach, and P. Mitchell, Proc. Combust. Inst. 31, 693–700 (2007).