CH + NO -> N + HCO
k = 3.00E+13 cm3/mol s
SOURCE:
From data of
- Dean, A.J., Hanson, R.K., and Bowman, C.T.
(1991) J. Phys. Chem. 95, 3180;
- Becker, K.H., Engelhardt, B., Geiger, H., Kurtenbach, R., and
Wiesen, P. (1993) Chem. Phys. Letters 210, 135.
- Lambrecht, R.K., and Hershberger, J.F.
(1994) J. Phys. Chem. 98, 8406.
- Markus, M.W., and Roth, P. (1995)
Shock Waves @ Marseille II, Springer-Verlag
(Brun, R., and Drunitrescu, L.Z. eds.) p. 95.
- as analyzed by
Dean, A.M., and Bozzelli, J.W. (1996)
in Combustion Chemistry II, Springer-Verlag, New York.
- COMMENTS:
-
Served as an optimization variable in GRI-Mech 2.1 release.
The rate coefficient value was not changed.
______________________________________________________________________
Temp delta-S delta-H kf kr Keq
(K) (cal/mol K) (kcal/mol) ----(mol,cm3,s)-----
______________________________________________________________________
300 -3.9 -41.6 3.00E+13 1.09E-16 2.75E+29
500 -4.1 -41.7 3.00E+13 1.47E-04 2.04E+17
1000 -3.9 -41.5 3.00E+13 1.83E+05 1.64E+08
1500 -3.6 -41.2 3.00E+13 1.88E+08 1.60E+05
2000 -3.6 -41.0 3.00E+13 5.91E+09 5.08E+03
2500 -3.6 -41.1 3.00E+13 4.66E+10 6.44E+02
3000 -3.6 -41.2 3.00E+13 1.85E+11 1.62E+02
______________________________________________________________________
[ Rate coefficient format |
Chemkin file |
Thermo data |
Main menu ]